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SYMBOLS

speed of sound, ft/sec.

zerc 1ift drag coefficient

lift coefficient

drag_divided by weight

drag due to 1ift divided by weight

zero lift drag divided by weight

drag due to 1ift divided by weight evaluated at lift equal to weight
drag, 1lbs.

specific energy, secZ,

thrust less zero lift drag, divided by weight
acceleration due to gravity

acceleration due to gravity at sealevel
altitude divided by 8y secZ,
altitude, ft.

Hamiltonian function

part of Hamiltonian containing control
1ift divided by weight

1ift, 1bs.

Mach number

radius of earth, ft.

reference area, ft2.

time, sec.

thrust divided by weight

thrust, 1lbs.
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¢*

sine of the flight path angle

velocity divided by g, Sec.

velocity, ft/sec.

airplane total weight, 1lbs,

component of position vector measured along fundamental parallel, ft.
component of position vector measured along fundamental meridian, ft.
angle of attack, deg.

weight flowrate, 1bs/sec.

flight path angle, deg.

drag due to lift factor

bank angle, deg.

adjoint variable associated with state variable i

atmospheric density, slugs/ft3,

thrust off-set angle, deg.

time-to-climb, sec.

mininum time-to-~-climb, sec.

heading angle, deg.
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APPROXIMATIONS IN THE MINIMUM
TIME-TO-CLIMB PROBLEM

Mark D. Ardema

Ames Research Center, Moffett Field, Calif. 954035

SUMMARY

The minimum time-to-climb problem is formulated as a third order
system and three approximate solutions based on reduced order systems
are presented. The first of these is the often used energy state, the
second is the less frequently used two state and the third is a slightly
altered form of the second, herein called the modified twd state. These
three approximations are discussed and compared both qualitatively and,
by using a numerical example, quantitatively. The numerical example is
also solved by the steepest descent method to provide a basis for com-
parison. It is concluded that the modified two-state approximation is
significantly better than the other two. This approximation is used to
assess the sensitivity of climb performance to various vehicle param-
eters and it is found that, as expected, thrust and weight influence the

time-to-climb most strongly.

INTRODUCTION

In the early years of flight, when aircraft speeds were relatively

low, performance optimization of aircraft was studied on a steady-state

7
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basis. With the advent of high-speed aircraft, however, dynamic effects
could no longer be neglected. Consideration of all dynamic effects leads
to problems of such computational complexity that tﬁe effort expended in
their solution is often not warranted for the purposes of preliminary
performance estimation, and thus approximate solutions have been sought.

The earliest and most widely used of these approximations is that
of energy state, sometimes called energy climb, This approximation was
proposed by Lush! and applied to the minimum time-to-climb problem by
Rutowski?, Systematic application of this approximation to several air-
craft performance optimization problems, including minimum time-to-climb,
is presented in reference 3. In this approximation, only the energy is
treated as a state variable and velocity (or altitude) plays the role of
a control variable. Boundary conditions are met by adjoining constant
energy paths to the optimal path.

Another approximation, called the two state in this paper, has also
been used, but to a much lesser extent. In this approximation, drag due
to 1ift is ignored. Altitude and energy (or velocity) are state variables
and flight path angle is the control variable. Thus boundary conditions
on altitude and velocity may be satisfied; however, the flight path angle
will be discontinuous.

In this paper, the minimum time-to-climb program is first precisely
stated and the necessary conditions for optimal control are determined
by employing Pontryagin's maximm principle.*’5:8 The concept of a
singular approximation is then introduced and it is shown that the two
possible singular approximations are just the two previously mentioned.
These two approximations are discussed and compared both qualitatively

and, using a numerical example, quantitatively.
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A third approximation is proposed called the modified two state,
which is based on the two state but includes drag due to lift and
accounts for the time required to change flight‘path'angle. Comparison
with the two-state approximation shows that inclusion of drag due to
1ift has a negligible effect but that the time to change the flight path
angle is significant, particularly at high speeds. The modified two-
state approximation is used to assess the sensitivity of ¢limb perform-

cance to various vehicle parameters for a specific numerical example.

1. MINIMUM TIME-TO-CLIMB PROBLEM

The most general system of equations of motion commonly employed
in aircraft trajectory computations is the following seventh order system
which describes a variable weight point mass moving over a spherical

non-rotating earth (c.f., ref. 7):

1
Xt = v To cos y cos X
= - >
Toth' cos y /ro
. V'r0
y' = ——— cos v sin ¥
- Toth!

ht = V' sin vy

g T' g D!
\.{' - .0 (8] .
= cos (a + t) - ——=— - g sin vy (1.1)
W W
L} _ go L' + T' . (u +T)] Sin 9
X =W [ sin 33317
- - go ' . . . B . v'
Y =gyr [LT + T' sin (o + 1)] cos- "V% €OS Y * g7 cos ¥

- >0
n
!
ja~)
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where T' = T'(h',V',B,a), L' = L'(h',V',a), D' = D'(h',V',0), g = g(h')
"and T and g, are given constants. In these equations, the state vector
is (x',y',h",V',x,Y,W) and the control vector is (¢,8,6).

For the purposes of the present paper, the following simplifying
assumptions are made*: 1) T, ("flat earth" assumption), 2) W is
constant, 3) T = 0, 4) g(h') = By» 5) T' is not a function of a, 6)
T'cos a = T' and L'+T' sin « = L'. In addition, it is clear that for
the minimum time-to-climb problem that 8 should be set to its maximum
value (this will be considered further later) and that if boundary con-
ditions on X', y', and x are not specified then only planar motion, say
x'=constant, need be considered. Using these assumptions and noting that
if range is to be neither constrained nor optimized then it is uncoupled
from the rest of the system, the following system is obtained:

fir = V' sin vy

"

Vl

8o .
TT'(T' - D" - g, siny (1.2)

Yy = ;%% L' - ;% cos Y
The decrease in system order which results from the uncoupling of the
range equation makes the minimum time-to-climb problem relatively easy
to solve compared with other performance optimization problems. Making
the change of variables

V= V'/go, h= h'/go, T=T'/W, D=D'/W, L=L'W (1.3)

*These assumptions have been found to be well-founded for many problems
of interest. . They have been made here for simplicity and do not affect
the subsequent developments.



in (1.2) results in

h = V sin Y

V=T-D-siny ‘ (1.4)
S

Y = V'(L ~ €05 ¥),

where T(h,V) and D(h,V,L) are known functions. Let

D(h,V,L) = D_(h,V) + D (h,V,L)

(1.5)
F&N)=T&N)-DJmﬂ
Then (1.4) becomes '
h =V siny
¥ =F-D - siny (1.6)
Y = %,' (L - cos ¥)

For the purpose of discussing approximations, it is advantageous to
introduce the energy variable E, defined by

E=%V2+h (1.7)

and use it to replace V in the equations of motion. Differentiating

(1.7) and using (1.6) leads to the system

h =V sin vy
E=V (F-D)) (1.8)
Y = % (L - cos ¥)
where
V = V(h,E) = VZ(E - h) (1.9)

and F = F(h,E),.DL = b (h,E,L).

The minimum time-to-climb problem is now stated as follows:
Suppose that there exists a region 2 of (h,E,L) space such that in @

we have 1) DL as a function of L is even, DL = 0 for L = 0, and
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sczo> 0, 2) F-D >0, and 3) B-h > 0. It is desired to find the

control history L(t) such that among all control his;ories which trans-
fer the system (1.8) from the values ho’ EO at time t = 0 to the values
h

E. at the time t = ¢ (the case of specified Yo and Yg will be dis-

f* =f
cussed later) such that the trajectories are entirely contained in R,
L(t) minimizes the transfer time ¢. The existence of such an optimal
control is assumed. The maximum principle of Pontryagin“:5:® will now
be used to obtain the extremal controls, one of which must be the
optimum control. If the extremal control is unique it will be the
optimal control.

The # function for the problem (1.8) is

(L - cos v) (1.10)

<}

H= lo + AV sin vy + AE V(F - DL) + AY

h

The adjoint variables satisfy
aD
: + Vv . aV aF L
by = - i sin v - e ¢ o "(ﬁ - _aﬁ")ﬁ

1 av)
+ AY VE(EF E (L - cos v)

' aD
Co () s o Y
Ag < - "h(aE sin y - A aE)h (F-Dp) -2 V(aE aE)h
1 {oV
Ay Fﬁ)h (L - cos v) (1.11)

. 1 .
AY = - lh Vcos vy - AY V-51n Y

The transversality conditions give the boundary values for (1.8) and

(1.11) as
h{(0) = ho h(¢) = hf

E(0) = Eo E(¢) = Eg (1.12)

AY(D) =0 AT(¢) =0
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The part of H which contains the control L explicitly is

A= - AEVD, + A 7L (1.13)
and the optimality condition is

L = arg Max E . _ (1.14)

The various cases which may arise are discussed in ref. 8. If the
energy of the final state is greater than that of the initial state
it is reasonable to assume that AE > 0 since AE may be viewed in most
cases* as the negative sensitivity of trajectory time ¢ to energy level
E. Therefore in the sequel it will be assumed that AE > 0; this
condition must be verified for any candidate solution. Under this

assumption, (1.14) becomes

n
‘3H aD

- L 1 _
A A W LR (1.15)

provided this gives trajectories in region &.

If T(h,V,8) is a monotonically increasing function of B subject to
0%B%R,, the con&ition_AE > 0 implies from (1.10) that g = B, on
optimal trajectories.

For later reference, the classes of trajectories called zoom climbs
(y = +90°) and dives (y = -90°) will be investigated with regard to the

necessary conditions. From (1.8c) L=0 on such trajectories and from

(1.11¢)

Thus, using (1.12),

¢
—
+
(L
u
b=

*Conditions for which this is true are discussed in ref. 4.



This solution satisfies the condition (1.14) if A_ > 0. The state

E

equations are now

=2
1}
4+
-

the adjoint equations are

- 3V 3
e ® o (5 )e - e (3R

i = # o (3 ) - 2 (a_v

<

a2

SF
)EF 3h)

3F
)h - "Ev(ﬁ)h

and H is

H = Ag*tApV + AGVF

Noting that

we form H=0to get

0= iihV tlhﬁ + iEVF + lEﬁF + A Vﬁ

E

0 = Xy, *FAg
Thus

H = lo = 0

so that zoom climbs and dives are "abnormal" arcs. This also shows that
Ag # 0. It may be concluded that in the fortuitous event that both the
initial and final points lie in the right sense on one of the directed

arcs

.%§.= +F ' (1.16)



-9-

that the optimal control is given by L = 0 and the optimal trajectory
by (1.16) together with y = 290,

Solution of the nonlinear two-point boundafy vaiue system (1.8) +
(1.11) + (1.12) + (1.14) has proved to be a formidable computational
problem. Therefore, there have been many attempts to obtain approximate
solutions based on simplified equations. Many of these approximations
are critically discussed in reference 8. All of them are found to
exhibit undesirable features. The approximate methods most often employed
are based on neglecting certain of the terms in (1.8) (and hence also
in (1.11)). If right-hand side terms are neglected (e.g., the aero-
dynamic forces) the order of the system remains the same; this may be
termed regular approximation. If, however, terms on the left-hand side
are neglected, the order of the system is reduced and thus not all of
the boundary conditions can be met. This loss in boundary conditions
is usually acéounted for by arbitrarily saying that the functions
instantaneously jump, usually at the boundaries, in just such a way as
to satisfy the boundary conditions. Hopefully, the approximation will
be accurate everywhere but in small neighborhoods of such jumps. It is
natural to call such approximations singular. Singular approximations
are a double-edged sword; the considerable simplification resulting from
decrease in system order is accompanied by a radical change in system
behavior.

If one takes the view that control variables are variables which
may be changed instanteously, then it is intuitively clear how singular
approximations are to be made. A relatively 'fast'" state variable (i.e.,

a variable capable of changing across its range relatively rapidly
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;ompared with the other state variables) should be relegated to the role
‘of a control variable by neglecting its derivative term. Thus control
variables may be viewed as limiting or degenerate‘forms of state
variables. Such a variable will lose its boundary conditions and it must
be assumed that these variables jump to meet their boundafy conditions.

The reason E has been substituted for V in the state equations for
the minimum time-to-climb problem is that this results in variables of
more widely separated '"speed". It has been found in practical problems
for supersonic aircraft that y is relatively fast as compared with h
and that h is relatively fast as compared with E (V is about the same
speed as h)., Thus there are two natural singular approximations for
this problem: In the "energy state' approximation, only E is a state
variable; in the "two state" approkimation both E and h are state
variables. These two singular approximations in the minimum time-to-
climb problem are discussed and compared in the remainder of this paper.

There are two possible procedures for solving singular approximation
problems in optimal control. In the first of these, the necessary condi-
tions are formulafed for the full system of equations and then the
appropriate terms on the left-hand side are neglected. In the second
procedure, the left-hand side terms are neglected previous to the
formulation of the necessary conditions. It can be shown that for the
energy state and two state approximations these two procedures are
equivalent,

In the_first.procedure, used for the energy state approximation in
this paper, the left hand sides of adjoint equations corresponding to

state equations with left hand sides neglected will be neglected. This
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step may be formalized by inserting a parameter into the state equations
prior to formulation of the necessary conditions in such a way that the
required approximation is obtained when the parameter'is set to zero.
This procedure results in a problem which falls under the domain of
singular perturbation theory. This theory is presented in detail in
ref. 9 for linear systems.

The second procedure, used for the two state approximation herein,
results in a problem with state dependent control constraints. Such
problems are treated in section 3.6 of ref. 4. Comparing the two
procedures shows that the adjoint variables associated with the state
variables whose derivatives are neglected in the first procedure may be
viewed formally as the ordinary Lagrange multipliers arising in the

maximization of the Hamiltonian in the second procedure.

2, THE ENERGY STATE APPROXIMATION

Consistent with remarks in the previous section, the energy state
approximation is obtained as a limiting case of (1.8) + (1.11) + (1.12) +

(1.14) by letting ﬁ,%,ih,iY + 0. For (1.8),

0=V sin vy
E=V (F-Dp)
0= %-(L - €05 Y)
so that y =0, L = 1 and
E=V (F - DLl) (2.1)
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where we now regard F = F (E,V) and DL = DL (E,v,1). From (1.11)
1

0= Ap o [v (F - DLI}]E
\e = - Ag 3¢ v & - o]y (2.2)
0= - AV |
The last of these gives Ay = o.
The appropriate boundary conditions are
E(o) = E ; E(¢) = Ef (2.3)
Equation (1.10) becomes
H= 23, + Ag V (F - DLl) (2.4)
From H.= 0, A, < 0 (note that Ao = 0 is not possible) and our.assumption

that V(F - Dy, ) > 0, (2.4) implies that
1

Ap > 0 {2.5)

Thus the first of (2.2) implies

9
E [V(F - DLI)]E =0 (2.6)
The optimality condition (1.15) becomes an equation for AY
) 3DL1
A_Y = AE v -é-l:- (2.7)

once (2.4) with & = 0 and A, = ~1 has been solved for AE' The second
of (2.2) is then satisfied identically,

| It may happen that (2,6) has multiple roots. In this case the
root which maximizes ¥ as given by (2.4) must be selected. If a "jump"
between roots occurs, V will be discontinuous (it is now, in effect, a

control variable) but the state variable E will be continuous. From

1.9,
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? (3 dhY _ d
(W)B = (E)E ('av E ~ 'V(E)E (2.8)
so that (2.6) may also be written

) ' (2.9)

'aan [V(F - DLl)]E

It is of interest to note that treating V as a control and E as a state
variable, and maximizing H as given by (2.4) with respect to V results .
in a control law identical to (2.9). This control law gives V in terms
of E and has been called the "energy climb path'. The total elapsed

time is obtained from (2.1) as

Eg
¢ =S dE (2.10)

o T - 01)

where V = V(E) is obtained from (2.9),

Returning now to the original problem (1.8), it is seen that the
energy climb trajectory will not meet the bdundary conditions on the fast
variable h. This was to be expected since the energy state approximation
is singular. Since h (or equivalently V) is now regarded, in a limiting
sense, as a control variable, its boundary conditions can be met by
instanteous changes during which the state E remains constant.

Consider the resulting trajectories in the (h,V) plane. '"Control

law" (2.9) may be written in terms of V and h as
) K 3 3h
B e -0+ o - ) ()

oF aDLl aF BDL1
=F DL]_ + V 5V 3V 1 v 3h 5h v 0 (2.11)
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Denote this curve by fE (h,V) = 0; as discussed earlier, this function
may be discontinuous in both arguments if multiple roots occur., The
initial arc lies on the constant energy contour through the initial

point

£,(h,V) = 1/2 (Vo? - V?) + (hg - h) = 0 (2.12)
Similarly, the final arc lies on
fe(h,V) = 1/2 (Vg2 - V2) + (hg - h) = 0 (2.13)

Under the assumption that fE(h,V) = 0 as described above exists in Q
and intersects both fo(h,V) = (0 and ff(h,V) = (0, an energy state approxi-
mate minimum time-to-climb trajectory exists. Such a trajectory is shown
schematically in Figure 1 for the case of one discontinuity in £g(h,V).
The following observations are now made:
{1) The energy state approkimation (2.1)'may be obtained from
(1.8) by setting vy = 0 in (1.8); this provides an alternate way of
looking at this approximation.
(2) The control law (2.9) may be determined directly without
recourse to the maximum principle. The time-to-climb is obtained from

(2.1) as
Eg
dE

This integral will 5e minimized when V (F - DLI) is maximized with
respect to V for eﬁbh E, giving (2.9)}. This may be interpreted as
maximizing "excess power' V (F - DLl) while holding E constant and was
the argument originally used by Rutowski.?

(3) The portions of the trajectory on which E = constant (such as
on arcs fo(h,Ej = 0 and ff(h,E) = O) have undesirable features. In the

first place, such arcs are traversed in zero elapsed time. It is often
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said that in energy state approximations, one may '"trade h for V with
" no penalty t." Further, the implicit assumption that v is small is
violated; in fact, the condition |sin y| ¢ 1 is violated. To see this,

use {1.6) to compute the slope

[=N

h - V sin v - . Vv (2.14)

dv " F - D; - sin v F-D
L1 Ll
T sin vy

Thus, starting at a given point (h,E(h,V)},1) in @ there is an admissible
region for trajectories in the (h,V) plane obtained by letting vy range

from -90° to +90°. On the other hand, from (1.7),

dh
(EV g~V

which does not lie jn the admissible region for F - DL > 0; The
situation is illustrated in Figure 2.

(4) For low-speed aircraft, a ''quasi-steady-state' approximation
is often employed in which changes in velocity and flight path angle
are ignored in comparison to changes in altitude. Setting V =0 and

Y = 0 in (1.6) leads to
he
¢ =S dh -
n, V(E - nLl)
Thus for minimum time-to-climb ¢*,
-%,-[V(F - DL)] =0
1+ h

3D
F Iy
Feny Vi) n O (2.15)

Comparing (2.15) with (2.11), it is seen that the former neglects a term

which may be expected to be small for small.velocity.

r
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(5) Since F and DL are usually given in terms of h' and Mach

number M,
vt

M= T ' | (2.16)

it is useful to write the energy climb path (2.9) in terms of h' and M.

The result is

. 3D,
aM 0 233 oF 1
Fob*g, (—a-““ Eﬁ_) WM Jn
)
am| 2E s =0 2.17
- SRt " BT /M )T (2.17)

(6) From (2.4) and (2.5) it follows that B = BM on the energy climb
path.

(7) Since the energy state formulation is independent of vy it
follows thét the solution of the problem with specified boundary values
of vy is the same as that for vy free.

(8) From (2.11) it is seen that if F and DL1 are the same
exponential function of h then (2.11) is no longer a function of h and
the energy climb path is a vertical line in the (h,V) plane.

(9) A pgraphical interpretation of the energy state solution is

presented in reference 10. Referring to (2.4), let

z (E,V) =%; Y (E,V) = F - Dy
1

Then

¥

H=-1+X =~
E3

with Ag > 0 so that the optimality condition is

V = arg Max-‘éi

Thus the optimal value of V is that which maximizes the slope of

¥ = ¥ (E,z) with E fixed as shown on Figure 3.
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3. THE TWO-STATE APPROXIMATION

In the two state approximation, it is assumed thdat drag due to

1ift DL is negligibly small and that vy is a fast variable as compared
with h and E. Let y, D ~ 0 in (1.8) to get
h=Vsiny
E = VF
o=Lq- )
=¥ ( cos Y

so that L is uncoupled from the state equations., It is convenient to

let
u = sin vy, |u| <1

Then the state equations are

h = Vu
E = VF
and the lift is givén by
L =y1 - u?

The adjoint equations associated with (3.2} are

= on(5E) e v - e ) e

‘%(%)h““%(%ggh

From {1.12) the boundary conditions are
o h(®)
E(0) = E,  E(¢)

i

E

h

n
n

h(0) hy

Ef

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

so that all state variable boundary conditions have been retained. The

H function is
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H =2y + Ay Vu+ Ag VF (3.6)
We have a system with state (h,E) and control u; the part of X explicity
a function of u is

B=dpVu (3.7)

Since V > 0, the optimality condition is

-1 if Ah <0
u = ?if A, = 0 (3.8)
+1 if Ah >0
so that iy is a "switching function."
The possibility of a singular are, on which
Ah =0 (3.9)
is now investigated. If (3.9) holds, (3.4) become
0= -2 205
(3.10)
. 3 (VF)
)\E=—RE BE
Equa%ion (3.6) is
H= 2 * Ag VF (3.11)

Since H = 0, Ao <0 (A, =0 is not possible in this case), this gives
' 1
M = IF (3.12)
so that A > 0. Thus the first of (3.10) implies that

2

== [VF]g = 0 (3.13)

on the singular arc, if it exists. To find u, differentiate (3.9) twice:

S 3(VF) _
Ah"'_lhﬁ'ﬁu'lE'—anl"o
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) 32V + . %Y .
o= - "hb‘ﬁ““"h[ahzh" 3NIE E] u

oy W 2 ,\E[azcvm . B2(VE) ]'3] -

h h 3h hZ * T9heE
v 32 (VF 32 (FV _
Ap = - AE[J—lahz vu + &0 vel - 0 (3.14)

Since Ag # 0, this implies

F [92(FV)/3h3E]
u = - (3.15)
32(FV)/3h?

provided this does not violate fu|sl. The singular arc must satisfy an
additional necessary condition5:l! called the Kelley condition or the

strengthened convexity condition. Since u appears linearly in

" d2 ¥ . . _ ‘s
Ap = Tz Tu the singular arc is of order m = 2. The Kelley condition
is
A o
_hey - (3.16)
qu
which, from (3.14), leads to
2
E_ﬂﬂl >0 (3.17)
3h?

Note that equality is not allowed in view of (3.15). It may be concluded
that the arc given by (3.13) is extremal if (3.17) and the condition
F [92(FV}/3h3E]

-1 ¢ - <1 (3.18)
22 (FV)/5h2

are satisfied.
Two-state approximate solutions are formed by joining arcs u = +1,

u = -1, and g% [VF]E = 0 in such a way that minimum time results and
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the boundary conditions are satisfied. If (3.13) has multiple roots,
this process may become quite complicated since switching between roots
occurs along paths u = ii and takes a non-zero elapsed time. If (3.13)
has only a single root (defines a single valued function'h =h (E)},
then a solution might appear in the (h,V)} plane as shown in Figure 4.
Since m/2 = 1 is odd, the control u will in general be discontinuous at
the junctions of arcs u = 1 with the singular arc.®
The following observations may be made.

- (1) The critical assumption is the neglecting of D;s if this is
done in (1.8) the first two equations become uncoupled from the third,
the latter being now regarded as an equation for L. However, L will
now have to be regarded as unbounded since y will be discontinuous.

(2) Setting DL’ ¥ + 0 in (1.6) leads to the two state approxima-
tion as would be expected.

(3) The singular arc (3.13) in terms of E and V is

= [VFlg = 0 (3.15)

in terms of h and V is

X oF oF
F+V (—) - v (-—-) =0 (3.20)
oV J, 3h fy

and in terms of h' and M is

g
aM (2o, m2 22 }(2E) _ m{2E) |-
“E;[(TM 2)(E). m(ah,)M] .

(4) The equation for the singular arc may be determined by a
Green's theorem argument.12 To see this, set DL = 0 in the first two
of (1.6), eliminate sin y, and evaluate the resulting line integral over

a closed curve in the (h,V) plane.
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_ 1 1
t—f['v—Fdh“‘-};dV]
By Green's theorem, this is equivalent to the surface integral over the

enclosed area:

_ 9 1 5 (1
t = ﬁ[w (W)h - ﬁ(ﬁ)v]dhdv
By considering various closed curves, optimal control may be deduced;

in particular, the "critical arc" is

or

which is the singular arc (3.20).

(5) On the arcs u = *1, the full equations of motion (1.8) and the
complete necessary conditions are satisfied.

{6) Since u is discontinuous at the junctions of u = 11 with the
singular arc, the ﬁumps in the fast variable y occur in the interior of
the trajectory and not at the boundaries t = 0 and t = ¢.

N Since#l >0 on the singular arc, it follows that 8 = BM'

E
(8) Since h and u do not appear in the second of (3.2), it is
tempting to treat E as a single state variable and V as the control.

This leads directly to (3.13) but does not give the arcs u = #1
necessary to meet the boundary conditions. This hapfens of course
because h must be treated as a state variable due to (3.5).

(9) Although this method technically neglects drag due to lift,

DL’ in practice it is desirable to include an average amount of drag

due to lift, say DL at L = 1.
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(10) Since vy is treated as a contrel variable, boundary conditions
" on y are met by instantaneous changes and there is no difference between
the cases of free and specified boundary values of ¥ in the two-state
approximation.

{11) From (3.20) it is seen that if F is an exponéntial function
of h then (3.20) is no longer a function of h and the singular arc is
a vertical line in the (h,V) plane.

(12) From (1.8) the assumption that vy is a fast variable worsens
as V increases so that the two-state approximation is of doubtful value

for hypersonic or higher speeds.

4, THE MODIFIED TWO-STATE APPROXIMATION

Both the energy state and two-state approximations have been shown
to exhibit undesirable features. The two-state approximation employs
one more state variable than the energy state and thus more accuractely
models the system dynamical behavior. The disadvantage of the two-state
approximation is that integrations (1.16) are fequired to obtain the
connecting arcs to the singular arc, whereas the connecting arcs in the
energy state approximation are algebraic relations. These integrations
however are quite simple and there appears to be no reason to use the
energy state approkimation as compared with the two state.

There are two undesirable features of the two-state approximation.
First is the absence of drag due to 1ift. This may be at least partially

compensated for by adding the drag due to 1ift at L = 1 to the singular
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arc equation. From (2.11) and (3.20) we see that if this is done the
energy climb path is identical to the singular arc.

The second undesirable feature is the jumps in y at the junction
points between the connecting arcs sin y = %1 and the sipgular arc and,
for the case of fixed initial and final y, at the endpoints. A time
correction for these jumps may be derived as follows. At a junction
point, h and E will to a first approximation remain constant while y
changes rapidly, say from Y, to 72. Referring to (1.8), we have a
single state variable system with control L

+ 1
Y = V'(L - COS ¥)

2 1

' Yy
dy

Solving for the elapsed time t_ -t

If L is bounded, say Lm <L« LM’ then, for minimum t, -t

Lyif v, >y

1

L* =
Lm if Y, <Y,
so that
Y2
= dy
t, -4 v L* - cos v
Y1
N2 - 1 tan 2 7T ten -
* Ny * - ——
2V -1 L - 1 tan 5 -1 L 1 tan 5
t,. -t = tan -t

(4.1)

provided that |L*[>1. Note that if |L,[, |L[>>1 then this is

approximately

L*



-24-

In summary, the medified two-state approximation is formed by

"patching together" the following: a) the energy climb path (2.11),

b) the arcs sin + = #1, and c) the arcs characterized by h = constant,

E = constant, L = L* which take time t2 - t1 as given by (4.1) and which
are needed at the junctions of arcs a) and b) and, if Yé and Yg are
specified, at the endpoints. This approximation may be expected to be a
good one provided that the time spent on arcs c¢) is small compared with
that spent on a) and b). From (4.1) the approximation will be poor when

V is large or when (L* - 1) is small.

5. COMPARISON OF APPROXIMATIONS - A NUMERICAL EXAMPLE

The three approximations previously discussed have been programmed
for a digital computer. The computer program computes the path in the
(M,hi) plane and the minimum time-to-c¢limb ¢*. The most general case
is shown in Figure 5. It may happen that one or more of the arcs shown
will be absent in a given example. Note that the condition h' =
cohstant > 0 has been imposed for physical reasons.

To gain insight into the nature of the paths which result from the
approximations and to compare these approximations with each other, a
numerical example is now considered. The data is that of "airplane 2"
of ref. 3 for which the aerodynamics are represented by

C, o 1/2 pV'2s

. 1
L L

n

D! a?) 1/2 pV*'28 ’

[}
~—~
9]
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Figure 6 shows the singular arc (3.21) and the energy climb path (2.17),
both of which are single valued for this airplane. Since the difference
in these two curves is that D, = 0 in the former and‘DL = DL1 in the
latter, it may‘be concluded that drag due to‘lift has a very small
effect.

Both the energy state and two—sfate trajectories for the minimum
time-to-climb between hé = 20,000 ft, Mo = 0.4 and h%

Mf = 1.0 are shown in Figure 7 where the elapsed times on the various

= 80,000 ft,

arcé are indicated in parentheses. The fact that the energy state
trajectory traverses the arcs E = constant in zero elapsed time is
offset to some ekfent by the fact that this trajectory remains on the
arc h"% constant and the energy climb path longer than the two-state
trajectory remains on h' = constant and the singular arc, However ¢*
as predicted by the energy state approkimation is significantly lower
than that prediéted by the two state. The closer to the energy climb
path that the end points lie the less this discrepancy will be. The
modified two-staté path is the same as the two-state path except that
the time-to-climb is 157 seconds instead of 132 seconds.

Figure 8 shows the energy time histories of the energy and two-
state trajectories. Since E is a state variable in both cases, E(t) is
;ontinuous. These histories agree very closely except at the terminal
point where additional time must be spent by the two-state trajectory
in meéting the ferminal condition on h'.

The minimum time-to-climb ¢* as computed by the various approxima-
tions is presented in Table I. The energy state and two-state cases

are as discussed before. The third column of the table shows the
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results of including DL at L = 1 in the singular arc computation
(i.e., using the energy climb path). Comparison shows that inclusion
of drag due to 1ift results in a negligible change in ¢*. The elapsed
times of the modified two-state approximation are shown'in the last
three colqmns. For this approximation, the cases of free and fixed
boundary values of y must be distinguished. 1In the first case, it is
seen that accounting for the time to change y at points 2, 3 and 4 has
added 22 seconds to ¢*, a significant amount. The requirement for level
flight at the beginning and end points adds another 24 seconds. Note
'_ that the elapsed time in changing v is higher at the higher velocity
points.. It may be concluded that neglecting the time required to
. rotate a vehicle is not generally a good approximation at high speeds.
Figure 9 illustrates alternate types of trajectories which may
occur, Type I is that previously discussed. In Type II, arc 2-3 has
vanished and in Type III arc 1-2 has vanished. Also shown is ¢* for the
modified two-state approximation for each trajectory.
The time histories of energy, flight path angle, altitude, and
Mach number aré shown in Figure 10 parts a, b, ¢, and d respectively for
the Type I modifiéd'two-state trajectory of Figure 9, Figure 10 illus-
trates the natﬁra of minimum time-to-climb trajectories for supersonic
aircraft: The initial portion of the trajectory (about two thirds
of the total time) is essentially a low, constant altitude acceleration
during which speed and energy are steadily increased. During the final
portion of the'trajectory, a "zoom'' maneuver is performed in which speed

is traded for altitude with energy remaining approximately constant.
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The steepest descent trajectory optimization program of reference 13
was applied to the example discussed above to provide a standard solution
for comparative purposes. For the present application, the steepest
- descent so;utiqn used equations describing mqtion of a Qonstant weight
vehicle flying in a great circle path over a spherical, non-rotating

earth;'using these assumptions in (1.1) gives

ht = V! sin v

L go

V' = 17-(T' cos @ - D') - g sin vy

'._..0 ' ' ] _g_ V!
T_——(L + T' sin a) - + —— | COoSs ¥

W vVt o +h!

The difference b;tween this system of equations of motion and the system
{1.2) is relatively small. For the steepest descent solution, Yo Was
fixed at zerc and Yg was free.

The steepest descent path is shown in Figure 11 along with the
approiimate pafhs. . The agreement is quite good, the major difference
being the relative smoothness of the steepest descent path. The times-
to-climb are compared in Table II where it is seen that the modified
twovstaie method ié in extremely good agreement with the steepest
descent value. The other two approximations underestimate the time by
a significant améunt.

One of the most important aspects of a preliminary design study
is a sensitivity analysis, i.e., a determination of those parameters
which have strong effects 6n performance. Use of the modified two-state

approximation in a sensitivity analysis is illustrated in Figure 12 for

the Type III trajectory of Figure 9. It is apparent that the climb
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performance as measured by ¢* is very sensitive to thrust T', slightly
less sensitive to weight W and final altitude h%, and not sensitive to

the aérodynamic parameters CL and n.
: [+

CONCLUDING REMARKS

The minimqm time-to-climb»problem has been formulated as a third
order system. Various approximate solutions based on reduced order
systems have been developéd, discussed, and compared. It was found that
| the energy state approximation has undesirable features and may
sigﬁificantly ﬁnderestimate the minimum time-to-climb, The two-state
app:g#ima;ion is an improvement over the energy state but has the
: unde#ifable feature of resulting in a discontinuous flight path angle
history. The modified two-state approximation is developed to overcome
this'deficienc} and is thought to be the superior approximation.

. Considera;ion of a numerical example showed good agreement between the
value§ of minimum time-to-climb as predicted by the modified two-state
appfoximation and by a steepest descent solution. A sensitivity
analysis indicated thrusf and weight had a large effect on climb

performance.
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TABLE 1.— MINIMUM TIME-TO-CLIMB BY VARIOUS APPROXIMATIONS.

L o Mod hip state | Mod two stote | Mod two stete
Time. sec Energy | Two state | Two stote - LT Lo*-2{lu*7 La®-2 L2277 La=-2
' state ©,=0) | o,=0 ) | ™ 270 Mo Moyom
: : L LU, Yorvs free | yo20, vy free | = v=0
4 0 0 0 0 8 8
112 0 14 14 14 14 14
to 0 0 0 8 8 8
1o 46 36 36 3 36 36
ts 0 0 0 2 2 2
tag 58 44 44 44 44 44
te 0 0 0 14 14 14
Y45 0 38 39 - 39 39 39
ts 0 ) 0 0 0 I8
Minimum | | |
time - to " 104 132 133 157 65 - 183
climb, ¢

tnm = Elapsed time on arc

ty =Elapsed time at point@

/2



TABLE 2.— COMPARISON OF MINIMUM TIME-TO-CLIMB BY VARIOUS APPROXIMATIONS
WITH STEEPEST DESCENT SOLUTION, Yo = g, v £ FREE.

- Minimum
time -to-climb,
¢, sec
Energy lun'f 04
Two state? 132 °
Mod. two state 165
Stespest descent 162

t Not influenced by boundary coqditions ony

re
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FIGURE 1.— Sketch of a typical energy-state minimum time-to-climb path.
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FIGURE 2,— Sketch showing relation of constant energy paths to
admissible region.
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FIGURE 3.~ Graphical construction of energy-state approximation.
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FIGURE 4.— Sketch of a typical two-state minimum time-to-climb path.
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(2.12} or (1.18)

h=constant

(2.13) or (.16}

{2.17)or (3.21)
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FIGURE 5.— Sketch of minimum time-to-climb path in (M,n') plane.
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FIGURE 6.— Singular arc and energy climb path.
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FIGURE 7.— Comparison of energy state and two-state trajectories.
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FIGURE 8.— Fnergy time histories.
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FIGURE 9.~ Modified two-state trajectories.
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FIGURE 10.— Time histories.,
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FIGURE 10.— Time histories (concluded).
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FIGURE 11.-- Comparisons of approximations with steepest descent,
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FIGURE 12.— Sensitivities,
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FIGURE 12,— Sensitivities {concluded).



